报告人简介
曹晓冬,1996年本科毕业于中国科学技术大学,2002年毕业于麻省理工学院获得博士学位。毕业后先后在哥伦比亚大学和康奈尔大学工作,2018年起在康奈尔大学担任正教授,曾担任本科生主任(2017-2020, 2023-2024)。曹晓冬的主要研究领域是Ricci流,包括Ricci孤立子和Einstein流形的分类。自2005年起发表了近三十篇论文,并于2013年获得西蒙斯(Simons)Fellowship。主要学术成果包括:1)发展了一套系统的证明Harnack不等式的方法;2)发现了Ricci孤立子上的Weitzenbock公式;3)证明了关于第二类曲率算子的Nishikawa猜想。
内容简介
The Riemannian curvature tensor can be viewed as an operator on the space of 2-forms, this is the curvature operator (of the first kind), which has been studied extensively. It can also be viewed as an operator on the space of traceless symmetric 2-tensors, this is the curvature operator of the second kind. We will talk about this approach and discuss about a conjecture of Nishikawa. This is a joint work with Matthew Gursky and Hung Tran.